Maharaja Ranjit Singh College of Professional Sciences, Indore Department of Mathematics		
Lesson Plan - B. Sc. IYear(CS/HONS/PCM/IT/ELEX) (July 2018 -Feb2019)		
Subje	Math	ics Paper I- Algebra and Trigonometry
Teacher - Manoj Joshi		
Day/Lecture	Unit	Topic
1	1	Basics of matrices
2	1	Types of matrices,determinant and its properties
3	1	Rank of matrices
4	1	Question on rank of matrices
5	1	Question on rank of matrices
6	1	Echelon form of matrices and numericals
7	1	Echelon form of matrices and numericals
8	1	Normal form of matrices
9	1	Question on normal form of matrices
10	1	Characteristic equation of matrix
11	1	Eigen values and eigen vector of matrix
12	1	Questions based on eigen values and eigen vectors
13	1	Linearly dependent and independent vectors
14	1	Row rank and column rank
15	1	Practise questions and doubts
16	1	Proof of theorems based on eigen values and eigen vector
17	2	Cayley- Hamilton theorem statement and verification
18	2	Proof of Cayley-Hamilton theorem and numerical problems
19	2	Solution of linear equation by matrix method
20	2	Consistency and inconsistency of linear equation
21	2	Numerical Problems
22	2	Numerical Problems
23	2	Homogoneous linear equations
24	2	Non homogeneous equations
25	2	Theorems on consistency and inconsistency
26	2	Cremer's method of solving linear equation
27	2	Practise questions and doubts
28	2	Practise questions and doubts
29	2	Revision
30	3	Introduction to theory of equation
31	3	Symmetric function of the roots

32	3	Synthetic division,roots of multiplicity
33	3	GCD of polynomials
34	3	Relation between roots
35	3	Numericals on relation between the roots
36	3	Numericals on relation between the roots
37	3	Transformation of equations,roots with sign change
38	3	Reciprocal equation,roots diminished by h
39	3	Descartes rule ,removal of the terms
40	3	Practise questions and doubts
41	3	Practise questions and doubts
42	4	Logic-logical connectives
43	4	Truth tables, problem on logical connectivity
44	4	Tautology,contradiction,logical equivalence
45	4	Algebra proposition
46	4	Boolean algebra definition
47	4	Examples on Boolean algebra
48	4	Properties of Boolean algebra
49	4	Properties of Boolean algebra
50	4	Properties of Boolean algebra,Boolean functions
51	4	Problems on normal forms
52	4	Algebra of electric circuit
53	4	Parallel and series connection and their problems
54	4	Logic gates and their problems
55	4	Logic gates and their problems
56	4	Practise questions and doubts
57	5	De-Moivre's theorem and it's proof
58	5	Problems on De-Moivre's theorem
59	5	Problems on De-Moivre's theorem
60	5	Expansion of Sine,Cosine and Tan Series
61	5	Direct and Inverse circular functions
62	5	Hyperbolic functions
63	5	Problems on above funtions

64	5	Problems on above funtions
65	5	Expansion of trigonometric functions
66	5	Expansion of trigonometric functions
67	5	Logerithm of complex quantities
68	5	Gregory Series
69	5	Gregory Series

$\begin{gathered} \text { Lesson Plan - B. Sc. IYear(CS/HONS/PCM/IT/ELEX) (July } 2018 \text {-Feb 2019) } \\ \text { Pubject -Mathematics } \\ \text { Teacher - Shifa Goyal } \\ \hline \end{gathered}$		
Day/Lecture	Unit	Topic
1	1	Basics of Differentiation
2	1	Successive Differentiation
3	1	nth derivative of standard functions
4	1	nth derivative of standard functions
5	1	Questions based on trignometric transformation
6	1	Questions based on partial fraction
7	1	Application of De-Moivre's theorem
8	1	Proof of Leibnitz theorem and questions
9	1	Numericals on Leibnitz theorem
10	1	Proof of Maclaurin's theorem and questions
11	1	Numericals on Maclaurin and Taylor's theorem
12	1	Asymptote introduction and general method to find asymptote
13	1	Shorter methods to find asymptote
14	1	Asymptote parallel to axes and curvilinear asymptotes
15	1	Asymptotes of polar curves and its intersection with curve
16	2	Curvature,intrnsic formula for radius of curnature
17	2	Cartesian, parametric and pedal formula to find radius of curvature
18	2	Tangents at origin,centre of curvature,chord of curvature
19	2	Concavity,convexity and point of inflexion,singular points
20	2	Multiple points,tangents at origin,cusp and node
21	2	Tracing of curves an introduction
22	2	Tracing of cartesian curves
23	2	Tracing of cartesian curves
24	2	Tracing of cartesian curves
25	2	Tracing of polar curves
26	2	Tracing of polar curves
27	2	Tracing of parametric curves
28	2	Tracing of parametric curves
29	3	Integration of transcendental functions
30	3	Integration of transcendental functions and Hyperbolic functions
31	3	Definite integrals and general properties
32	3	Reduction formulae
33	3	Reduction formulae
34	3	Quadrature and determination of plane curves
35	3	Quadrature of polar curves, area between two curves
36	3	Rectification for cartesian equations
37	3	Rectification for cartesian equations
38	3	Rectification for parametric and polar equations
39	3	Numericals on parametric and polar equations

40	3	Intrinsic equation from cartesian and polar equations
41	4	Introduction of Linear differential equations and their solution
42	4	Linear differential equations and equation reducible to linear
43	4	Change of variables,exact differential equations and their solutions
44	4	Integrating factor,rules for finding integrating factors
45	4	Rules for finding integrating factors
46	4	Equations solvable for p
47	4	Equations solvable for x and y
48	4	Clairaut's form,Singular solutions
49	4	Geomerical meaning of differential equation,orthogonal trajectries
50	4	Differential equation of orthogonal trajectories,self orthogonal family
51	5	Linear differential equations with constant coefficients
52	5	Auxiliary equation with equal and different roots
53	5	Auxiliary equations with imaginery roots
54	5	General method to find particular integral
55	5	Short methods to find particular integral
56	5	Short methods to find particular integral
57	5	Differential equations reducible to linear equations
58	5	Linear differential equations of second order
59	5	Method of Variation of parameters
60	5	Method of Variation of parameters

Maharaja Ranjit Singh College of Professional Sciences, Indore Department of Mathematics Lesson Plan - B. Sc. I Year(CS/HONS/PCM/IT/ELEX)(July 2018-19) Subject -Mathematics Paper III- Vector Analysis and Geometry Teacher - Payal Khandelwal, Manoj Joshi		
Day/Lecture	Unit	Topic
1	1	Introduction of vector triple product,geometrical significance
2	1	Condition of coplanar and non-coplanar vectors
3	1	Vector product of four vectors
4	1	Reciprocal system of vectors and its properties
5	1	Limit,continuity and differentiability of vector functions
6	1	Derivative of scalar product of vectors
7	1	Derivative of cross product and triple product of vectors
8	1	Scalar and vector point function, directional derivatives
9	1	Gradient of scalar point functions
10	1	Theorems,gradient of constant,sum and difference of two functions
11	1	Gradient of product and quotient of two functions
12	1	Unit tangent vector,tangent line and divergence of a vector
13	1	Curl of vector,constant vector and sum of two functions
14	2	Vector integration,definite integral
15	2	Line integral,circulation
16	2	Irrotational vector
17	2	Surface integral
18	2	Volume integral
19	2	Gauss's divergent theorem
20	2	Deductions and applications of Gauss divergence theorem
21	2	Green's theorem
22	2	Stoke's theorem and it's cartesian equivalent
23	2	Application of Stoke's theorem
24	2	Applications of Gauss and Stoke's theorem
25	3	General equation of second degree,conic section and it's nature
26	3	Centre ,axes, eccentricity and foci of conic
27	3	Tracing of parabola and hyperbola
28	3	Tracing of ellipse
29	3	System of conics
30	3	System of conics
31	3	Angle between two curves,orthogonal circles
32	3	Conics passing through $4 \& 5$ points
33	3	Radical axis and properties of redical axis
34	3	Confocal conics
35	3	Polar equation of conics
36	3	Polar equation of conics
37	4	Cone and it's equation
38	4	Condition of general equation of 2nd degree to represent cone
39	4	Equation of cone with vertex at origin

40	4	Generators of the cone
41	4	Reciprocal cone and enveloping cone
42	4	Right circular cone
43	4	Equation with cylinder
44	4	Different numerical examples of cylinder
45	4	Right circular cylinder
46	4	Tangent plane to the cylinder
47	4	Enveloping cone of cylinder
48	5	Central conicoid
49	5	General and standard equation of central conicoid
50	5	Types of conicoids
51	5	Tangent line,tangent plane
52	5	Director sphere,normal lines
53	5	Polar planes,polar lines
54	5	Enveloping cone,enveloping cylinder,locus of chords
55	5	Paraboloid
56	5	Paraboloid
57	5	Plane section of conicoid
58	5	Generating lines
59	5	Generating lines
60	5	

Maharaja Ranjit Singh College of Professional Sciences, Indore Department of Mathematics Lesson Plan - B. Sc. IIYear(CS/HONS/PCM/IT/ELEX) (July 2018-19) Subject -Mathematics Paper-I Abstract Algebra Teacher - Manoj Joshi		
Day/Lecture	Unit	Topic
1	1	Basics of set
2	1	Binary operations, definition of group
3	1	Examples of group
4	1	Examples of group,groupoid,semigroup and monoid
5	1	Properties of group
6	1	Modulo groups,residue class
7	1	Subgroup, criterion for subgroup
8	1	Algebra of subgroups
9	1	Subgroup generated by subsets
10	1	Order of element and it's theorem
11	1	Theorems related with order of group
12	1	Cyclic group and it's examples
13	1	Properties of cyclic group
14	2	Coset and it's definition and examples
15	2	Theorems on cosets
16	2	Theorems on cosets
17	2	Coset decomposition and Lagrange's theorem
18	2	Normal subgroups,definition and examples
19	2	Theorems on normal subgroups
20	2	Theorems on normal subgroups
21	2	Algebra of normal subgroups
22	2	Self conjugate elements and centre of group
23	2	Quotient group
24	2	Theorems on quotient groups
25	3	Homomorphism and Isomorphism
26	3	Properties of Hpmomorphism
27	3	Theorems of Homomorphism and Isomorphism
28	3	Kernal of Homomorphism
29	3	Theorems on kernal of Homomorphism
30	3	Fundamental theorem
31	3	Permutation group
32	3	Types and properties of permutation
33	3	Theorems on permutation
34	3	Cyclic permutation,transposition,even-odd permutation
35	3	Theorems on even permutation

36	3	Cayley's theorem
37	4	Group Automorphism
38	4	Inner Automorphism and it's theorem
39	4	Therems on Automorphism
40	4	Conjugate element and conjugacy relation
41	4	Conjugate class and self conjugate relations
42	4	Self conjugate elements and centre of group
43	4	Normalizer of an element and theorems
44	4	Class equation of finite group
45	4	Centre for group of prime - power order
46	4	Cauchy's theorem for finite abelian group
47	4	Cauchy's theorem for finite non-abelian group
48	5	Ring it's definition
49	5	Examples of rings
50	5	Types of rings
51	5	Properties of rings
52	5	Ring Homomorphism and Isomorphism
53	5	Theorems on ring homomorphism and isomorphism
54	5	Ideals and principle Ideals
55	5	Kernal of ring Homomorphism,Euclidean ring
56	5	Subring and characteristics of rings
57	5	Polynomial ring and it's properties
58	5	Integral domain and field
59	5	Theorems on integral domain and field
60	5	Theorems on integral domain and field

Maharaja Ranjit Singh College of Professional Sciences, Indore Department of Mathematics Lesson Plan - B. Sc. IIYear(CS/HONS/PCM/IT/ELEX) (July 2018-19) Subject - Mathematics Paper -II Advanced Calculus Teacher - Payal Khandelwal, Shifa Goyal		
Day/Lecture	Unit	Topic
1	1	Definition and limit of sequence
2	1	Examples of convergent sequence
3	1	Types of sequence and it's examples
4	1	Theorems on convergent sequence
5	1	Cauchy's sequence and it's theorems
6	1	Convergence of series
7	1	Test of convergence of series
8	1	Test of convergence of series
9	1	Test of convergence of series
10	1	Alternate series and it's convergence
11	1	Absolute and conditional convergence
12	1	Theorems and related questions
13	2	Continuity of function of one variable and examples
14	2	Continuity in intervals
15	2	Kinds of discontinuity with examples
16	2	Uniform continuity it's theorem and examples
17	2	Differentiability and examples
18	2	Differentiability on an interval and examples
19	2	Chain rule, derivative of inverse function
20	2	Darboux theorem,Roll's theorem
21	2	Problems on Darboux and Roll's theorem
22	2	Langrange's Mean value \& Cauchy's mean value theorem
23	2	Taylor theorem and its various forms
24	2	Problems on Taylor's theorem
25	3	Function of two variables with examples
26	3	Limit of function of two variables
27	3	Continuity of function of two variables
28	3	Examples and questions
29	3	Partial differentiation
30	3	Euler's theorem
31	3	Problems based on Euler's theorem
32	3	Change of variable
33	3	Change of variable
34	3	Taylor's theorem of two variables
35	3	Jacobian

36	3	Jacobian
37	4	Family of curves, Envelopes
38	4	Problems to find envelope
39	4	Evolute and problems based on it
40	4	Maxima and Minima
41	4	Problems to find Maxima and Minima
42	4	Lagrange's undetermined multiplier method
43	4	Beta function and its properties
44	4	Gammma function and its properties
45	4	Problems based on Beta and Gamma function
46	4	Legendre's duplication formula
47	5	Multiple Integral and examples
48	5	Examples of multiple integral of polar coordinates
49	5	Dirichlet's integral and its problems
50	5	Volume of solid of revolution and examples
51	5	Surface revolution and examples
52	5	Change of order of integration
53	5	Change of order of integration

Maharaja Ranjit Singh College of Professional Sciences, Indore Department of Mathematics Lesson Plan - B. Sc. II Year(CS/HONS/PCM/IT/ELEX)(July 2018-19) Subject - Mathematics Paper - III Differential Equation Teacher - Shifa Goyal		
Day/Lecture	Unit	Topic
1	,	Power Series solution with numericals
2	1	Series solution by Forbenious method,Numericals
3	1	Series solution by Forbenious method,Numericals
4	1	Bessel function and its properties
5	1	Reccurence relations
6	1	Orthogonality of Bessel's function
7	1	Legendre function
8	1	Generating function of Legendre function
9	1	Roderige's formula, Christofel summmation formula
10	1	Reccurence relations
11	2	Definition of Laplace transformation and some standard functions
12	2	Properties and theorems of Laplace transformation
13	2	Laplace transformation of product of 't' and its powers
14	2	Initial and final value theorem and problems
15	2	Laplace transformation of derivatives
16	2	Laplace transformation of derivatives and realted problems
17	2	Laplace transformation of Integrals
18	2	Laplace trnsformation of periodic functions
19	3	Laplace trnsformation of periodic functions
20	3	Inverse Laplace transformation
21	3	Inverse Laplace transformation of standard functions
22	3	Properties of Inverse Laplace transformation
23	3	Problems based on inverse Laplace transformation
24	3	Problems based on inverse Laplace transformation
25	3	Problems based on inverse Laplace transformation
26	3	Inverse Laplace of Multiplication and division of ' p '
27	3	Convolution theorem and its problems
28	3	Heavside expansion formula and problems
29	3	Application of Laplace transformation
30	3	Application of Laplace transformation
31	4	Partial differential equations of first order
32	4	Problems based on PDE
33	4	Lagranges metod to solve PDE
34	4	Lagranges metod to solve PDE
35	4	Lagranges metod to solve PDE
36	4	Problems of PDE of first order
37	4	Standard form of PDE of order one degree high
38	4	Standard form of PDE of order one degree high
39	4	Standard form of PDE of order one degree high

40	4	Charpit's general method of solution
41	4	Charpit's general method of solution
42	4	Charpit's general method of solution
43	5	Partial differential equations of higher order
44	5	Examples on Partial differential equations of higher order
45	5	Canninical form
46	5	Canninical form
47	5	Classification of linear PDE of second order
48	5	Homogeneous linear partial differential equation
49	5	Short methods for finding particular integral
50	5	Short methods for finding particular integral
51	5	Short methods for finding particular integral
52	5	Nonhomogeneous linear PDE
53	5	Nonhomogeneous linear PDE
54	5	Nonhomogeneous linear PDE
55	5	Equations reducible to PDE with constant coefficient
56	5	Equations reducible to PDE with constant coefficient
57	5	Equations reducible to PDE with constant coefficient
58	5	Equations reducible to PDE with constant coefficient
59	5	Geometric problems
60	5	Geometric problems

Maharaja Ranjit Singh College of Professional Sciences, Indore		
		epartment of Mathematics
Lesson Pla	. Sc	Year(CS/HONS/PCM/IT/ELEX) (July18-Dec18)
Subject -	hem	Paper-Linear Algebra \& Numerical Analysis
Teacher - Manoj Joshi, Shifa Goyal		
Day/Lecture	Unit	Topic
1	1	Basics of ring and field
2	1	Definition of vector space
3	1	Examples
4	1	Properties of vector space
5	1	Vector subspace,theorems
6	1	Theorems ,Linear and direct sum
7	1	LI,LD vectors, linear span and theorems
8	1	Finite dimentioanal vector space
9	1	Basis and it's theorems
10	1	Basis and it's theorems
11	2	Linear transformations and isomorphism
12	2	Theorems on homomorphism and direct isomorphism
13	2	Theorems
14	2	Matrix representation,theorems
15	2	Examples
16	2	Rank and nullity of linear transformation
17	2	Eigen values and eigen vectors
18	2	Examples
19	2	Cayley-Hamilton theorem
20	2	Diagonalization of matrix
21	2	Quadratic forms
22	2	Orthogonal reduction
23	2	Examples
24	2	Quotient space
25	2	Theorems on quotient space
26	3	Solution of Equations
27	3	Finite differences, Operators, Interpolation
28	3	Forward and backward Difference formulae
29	3	Forward and backward Difference formulae
30	3	Subdivision of interwals and its examples
31	3	Divided differences Interpolation formulae
32	3	Lagrange's Interpolation formulae
33	4	Solution of Simultaneous equations Direct method
34	4	Solution of Simultaneous equations Direct method
35	4	Iterative Method

36	4	Iterative Method
37	4	Inversion of matrix
38	4	Inversion of matrix
39	4	Examples
40	4	Examples
41	4	Examples
42	5	ODE Eulers and Modified Eulers Method
43	5	Examples
44	5	Single Step R-K Method
45	5	Predictor-Corrector Method
46	5	Milne's Method, Milne's Simpson Method
47	5	Numerical Solution of higher order DE
48	5	Numerical Integration
49	5	Newton Cote's Quadrature formula
50	5	Simson's $1 / 3$ and 3/8 rules, Trapezoidal rule
51	5	Examples
52	5	Gaussian and Quadrature formula
53	5	Examples
54	5	Examples
55	5	

Maharaja Ranjit Singh College of Professional Sciences, Indore Department of Mathematics
Lesson Plan - B. Sc. VI Year(CS/HONS/PCM/IT/ELEX)(Jan 2018 -June2019)
Subject - Mathematics Paper-Real analysis,Discrete mathematics\& Graph Th Teacher - Manoj Joshi, Shifa Goyal

Day/Lecture	Unit	Topic
1	1	Riemann Integral
2	1	Riemann Integral
3	1	Riemann Integral
4	1	Algebra of Riemann integral functions
5	1	Algebra of Riemann integral functions
6	1	Algebra of Riemann integral functions
7	1	Integrability of continuous and monotonic function
8	1	Integrability of continuous and monotonic function
9	1	Examples
10	1	Theorems
11	1	Fundamental theorem of integral calculus
12	1	Mean value theorem,Examples
13	2	Metric space definition and examples
14	2	Neighbourhood,limit point and interior point
15	2	Open set, close set
16	2	Theorems
17	2	Closure, interior and boundary points
18	2	Subspace of metric space,theorm
19	2	Cauchy sequence and related theorems
20	2	Complete metric space
21	2	Contraction principle, fixed points
22	2	Complete order field,Glb and Lub property
23	2	Archemedean property,density theorem
24	2	Continuous function and theorems
25	2	Uniform continuity
26	3	Algebra of logic,connectors
27	3	Tautology,contradiction,logical equivalence
28	3	Examples
29	3	Algebra of propositions
30	3	Quntifiers
31	3	Boolean algebra
32	3	Property of boolean algebra
33	3	Examples
34	3	Examples
35	3	Algebra of electric circuits

36	3	Examples
37	4	Boolean functions,minimal boolean functions
38	4	Disjunctive forms,examples
39	4	Comjunctive forms,examples
40	4	Theorems
41	4	Binary relation,equivalence relation
42	4	Examples
43	4	Partitions,theorems
44	4	Partial order realtions
45	4	Examples
46	5	Graph and its examples
47	5	Multi graph,weighted graph,subgraph
48	5	Theorems
49	5	Shortest path in weighted graph
50	5	Tree,types of tree and examples
51	5	Properties of tree
52	5	Walk-path,Connected and disconnected graph
53	5	

